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S U M M A R Y  
The flow of a stratified fluid over a barrier is considered. The initial-value problem is solved, and it is shown that 
there is no disturbance far upstream of the barrier when t -~ ~ .  The stationary solution which is obtained by letting 
t - ,  2 ,  is given in a simple closed form for a barrier of an arbitrary shape. 

1. Introduction 

In this paper we are concerned with the flow of a stratified fluid over a barrier (Long's model). 
A barrier is placed in a stratified fluid in equilibrium. At a given point of time the barrier is 
suddenly set into motion, and is given a constant velocity. The resulting flow is considered 
relative to a system fixed to the barrier. The shape of the barrier is quite arbitrary; it is not 
necessarily an isolated one. If we let t ~ oo in our solution, we obtain a stationary solution 
which satisfies the equation of Long ([1], p. 83) and with no waves far upstream irrespective of 
the value of the Froude number, F. 

It is known that the solution of the corresponding stationary problem as considered by 
Long [2], is indeterminate* when F < re- 1, and a condition that there shall be no disturbance 
far upstream of the barrier has to be put on the solution. This difficulty is avoided when treating 
the problem as an initial-value problem; we then obtain a uniquely determined solution with 
no waves far upstream. Experimentally one has observed the phenomenon of blocking (see 
[2]). In our opinion this must be a non-linear phenomenon. At least this paper, which deals 
with the linear theory, supports Long's assumption of no disturbance far upstream of the 
barrier. This is also in agreement with the results obtained in [3] and [4]. 

2. Formulation of the Problem 

The problem to be studied is assumed to be two-dimensional, and is considered in an x - z -  
plane. The fluid which is stratified, incompressible and inviscid, is confined between two rigid 
boundaries; the bottom with the shape given by the eq. z = t/(x), and the horizontal plane at 
z = d. The fluid is of infinite extend in the x-direction. 

The problem is treated as an initial-value problem. For  t <  0 the fluid is in equilibrium 
(v ' -0) ,  and the density field is given by P = P o - f l z ,  (Po and fl > 0  are constants). At t = 0  the 
barrier is set into motion instantaneously. It is given a constant velocity - Ui, where i is the 
unit vector in x-direction. During the small time interval which it takes the barrier to attain 
its velocity there is no generation of vorticity, (see [5], p. 471). Therefore, since the vorticity is 
zero before the barrier is set into motion, V x v '--0 at t = 0 +, i.e. immediately after the barrier 
has attained its velocity. Also the displacement of the fluid particles is negligible during the 
small time interval which it takes the barrier to attain its velocity, i.e. the density field at t = 0 + 
is the same as immediately before the barrier is set into motion, and we must have that : 

Dr' 
- V p - ( p o - f l z ) g k  at t = 0  + , Po Dt 

where k is the unit vector in the z-direction. It is assumed that the density stratification is so 

* Long has remarked that this indeterminancy can be removed by introducing a fictitious viscosity. 
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small that the Boussinesq approximation can be applied ; therefore P0 in the inertial term. From 
this eq. we get : 

D r '  
V x p o ~ -  = 0 at t = 0  + . 

From now on and in the rest of this paper the flow is referred to a system which is fixed to 
the barrier. In this system there is a basic motion of the fluid given by : 

v b = U i ,  Pb = P o - f l  z (2.1) 

The equations governing the motion are the hydrodynamic equations for an incompressible 
and inviscid fluid. These equations are linearized, assuming the disturbances in the velocity- 
and density field to be small compared with G and Pb respectively, and the stream function 
7 j (x, z, t) is introduced. 7 j (x, z, t) is defined by 

vl  = - V x 7~ (x, z, t ) j  , (2.2) 

wherej  is the unit-vector in the y-direction and v 1 denotes the disturbance in the velocity field. 
Because the Boussinesq approximation is applied, we obtain the following equation for 

q ' ( x ,  z,  t ) :  

( 5  ~2V2 #27~ gfi (2.3) 
+ : o 0 - �9 

~ x /  ~ ' Po 

The boundary conditions are that the velocity component normal to the boundaries must be 
equal to zero. Linearizing the boundary conditions, we obtain : 

0 7 j __&/(x) at z = 0 ,~ 
v l ~ -  0x - U 0x / (2.4) 

v l z = O  at z = d ,  

where z = r/(x) represents the shape of the barrier, t/(x) is supposed to be a continuous function 
of x, and r/(x) ~ 0 when Ix] -* oo so that j'~ ~ It/(x)ldx exists. 

The initial conditions follow easily from the discussion at the beginning of this section. 
They are : 

! 

D t V21D = 0, which in linearized form is: ~. at t = 0  + . (2.5) 

! 
+ u 

3. The Solution of the Problem* 

in (2.3) we use the Fourier and the Laplace transformation to obtain 

(p+ikU) 2 k 

where 

0 (k, z, t) = F .T .  { 71 (x, z, t) } = 7 j (x, z, t) e ,kx d x .  
- o o  

~b (k, z, p) = 0 (k, z, t) e -  pt d t .  

(3.1) 

* After the submission of this paper there has appeared a paper by J. W. Miles : Transient motion of a dipole in a 
rotating flow, J. Fluid MeeK, 39, (1969) 433, where that problem is solved in an analogous manner.  
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Also from (2.4) we obtain 

= F(k) at z = 0 ,  where F ( k ) = F . T . { - U t l ( x ) }  
P 

~ = 0  at z = d .  

From (3.1) we obtain 

t ~ dz 2 + k2 + (U ~) ~ = 0 ,  where ( =  ~-. 

(3.2) 

(3.3) 

A solution of this equation, which satisfies the boundary conditions (3.2), is 

_ F (k) sin co ( d -  z) 0 (3.4) 
p sin cod , where co2= _ k 2 +  ( U - ~ )  z" 

To find ~b (k, z, t) we have to perform the inversion, i.e. 

1 f '+'~ ks(Jglk_[ i{~176176 
e'" dp - ~ e-  ,k~, d~ . (3.5) 

(k, z, t) = ~ ~,-ioo 2rt J i~o co 

The line of integration is above or below the real axis in the complex ~-plane according to 
whether k > 0 or k < 0. 

The singularities of ~ are : 

0 ~ (1) Poles a t e = 0 ,  ~ - = U -  121 \ d /  + k2 

,0 ~ 
~ " + = U + { ( n 2 ) 2 +  k 2f ~' n = l ' 2  . . . . .  

(2) A non-isolated essential singularity at ~ = U. 
co= { - k 2 + O / ( U - ~ ) 2 }  ~ is a two-valued function of ~ with branch-points at ~= U+_O~/k. 

However, we find that these points are not branch-points for ~. To evaluate the integral in (3.5) 
we perform an integration in the complex ~-plane. We obtain 

0 (k, z, t) = F (k) sin coo ( d -  z) F (k) ~ a, nrcz e 
sin coo d , :1  ~ sin ~- -  

ik~n t 

I �9 
(3.6) 

where 

+ F(k) ~ a, . nrcz 

co o = -- k , a, = d2 2 ~-' 
+ k 2 

The solution of the problem is now found by performing the inversion, i.e. 

1 ,/,(k, ~, t) e'kXdk (3.7) (x, z, t) = ~ - ~  

When ~b (k, z, t) has poles on the real k-axis, the principal value of the integral is to be taken. 

4. Investigation of the Time-Dependent Part of the Solution 

In this section we will study the asymptotic behaviour of the solution (3.7) for x fixed and t ~ oo. 
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We introduce (3.6) into (3.7) and find that we have to investigate how the following types of 
integrals behave asymptotically : 

27c 

1 ' F an 1 F(k)  aN o~ e i k (x -~dk  = ~ oo ~+ eikXe'I~(k)dk, (4.2) 

where we have written 

A (k) = -ik U - { (~)~  +k ~ , 

We choose that branch of the two-valued function { (n~/d)2+ k2} ~ which has the real part > 0. 
Let 

NTc < F -1 < (N+ 1)~, 

where N is an integer, and F = U/O~d is the Froude number. 
We find that 

I ~ ~ - = 0  for k=_+k~=_+,, ~ 5 -  , (4.3) 

where k, is real when n < N and purely imaginary when n > N. 
To study the asymptotic behaviour of the integrals (4.1) and (4.2) we will use the method of 

steepest descents [6]. 
Let us start with the integral in (4.1). The saddlepoints are given by the equation 

f'~ (k) = 0 ,  

where the prime indicates differentiation with respect to k. The saddlepoints are : 

( n : ?  , 
k=+_k,~=+_ - \ ' d /  § 

which are real when n < N and purely imaginary when n > N. Also I k,sl < I k, I. 
Applying the method of steepest descents to the integrals in (4.1) and ~4.2), we deform the 

original path of integration (the real k-axis) to a path (denoted by F) which consists of a set of 
lines along which Re f~(2) = const. < 0 or Im f~(2) = const., going through the appropriate 
saddlepoint(s). In the following it is assumed that F(k) is analytic on and in the region between 
the real k-axis and F. We obtain: 

1. When n <_<_ N, 

f f 1 P ( . . . )e t f l (k)dk = 1 ( . . . )e t f , (k)dk - 
2~ _ ~  ~ r 

i ik.x k XR e - i k 'xq  - ~ IF (kn) Rk. e + F ( - -  .j _k. J ,  (4.4) 

where R + k .  are the residues of the function ( a . / ( 2 )  at its poles k =  +k . .  In this case F goes 
through the saddlepoints + kns , which are real. N o w  
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1 i (" ' )e 'Yl(k)dk = 0( t - r  when t--,  oo.  (4.5) 
27~ F .2 

The main  cont r ibut ion  to the asympto t ic  expression for the integral in (4.5) comes  f rom the 
regions a round  the saddlepoints.  F r o m  (4.4) and (4.5) we obta in  : 

i �9 
1p 

( . . . )e  ~z~(k)dk~ - ~ [ F ( k ~ ) R k , , e i k n ~ + F ( - k , )  R k e ik, x (4.6) 
2~ _ o0 z n 

when t --* ~ .  

2. When  n > N,  

"2re ( . . . )etI l(k)dk = ~ ( . . . ) e t ~ ( k ) d k = O ( t - ~ e x p { t R e  J i ( - k n s ) } )  when t ~ o c .  
oo  

F goes th rough  the saddlepoint  - k,s, which is purely  imaginary.  Re f l  ( -  k,s) < 0 and conse- 
quent ly the integral in (4.1) with n > N tends to zero when t ---, or. 

3. It  remains  to give the asympto t ic  behav iour  of  the integral  in (4.2). The  saddlepoints  are 
given by the equat ion f ~  (k) = 0, which is satisfied by:  

k =  +_A ~+_iB ~,  where 

+ , 

Yl~ 2 C ~2 
= , 

C ~ . 

In this case F goes through the saddlepoints  +_ A ~ - iB ~, and we obta in  : 

1 t'~' 1 t" (. . .)etS~(k)dk = 2~z _ ~, ( ' ' ' )  etJ~(k)dk = -2~ r 

= 0(t -~  exp {t Re  f 2 ( A ' ~ - i B ~ ) } )  when t -~  oo.  

(Re f2 ( A'~ - iU'~) = Re f2 ( -  A'~ - iS~)) �9 

We find that  Re  f2 ( A ~ -  iB�89 < 0, and therefore the integral in (4.2) tends to zero when t ~ oo. 
In the foregoing we have assumed that  F (k) is analyt ic  on and in the region between the real 

k-axis and F. For  a given barr ier  it has to be investigated whether  this a s sumpt ion  is satisfied 
or not. When  the barr ier  is that  of Long,  i.e. when 

tl(x ) = ~ l + c o s  ( H ( x + b ) - H ( x - b ) ) * ,  (4.7) 
/ 

it is found that  F(k)  is analytic in the whole k-plane. Consequent ly  the results above  are valid 
for this barrier.  We arrive at the same conclusion when the barr ier  is a general  isolated one. 

When  the barr ier  is that  of Queney,  ([1],  p. 68), f ( k )  is not  analyt ic  in the whole k-plane, and 
the results above  cannot  be applied directly. However ,  we can split the integral j ' ~  into the 
two integrals S ~ ~ and j'~, and  in these two integrals F (k) is analytic, and we can find the a symp-  
totic behaviour  of  them separately. It is to be noted  that  there will be an asympto t ic  contr ibu-  
t ion of order  t -  ~ f rom the region near  the origin in bo th  of these integrals. However ,  this con- 
t r ibut ion tends to zero when t ~ o% and consequent ly  the main  result above,  which is expressed 
by (4.6), is still valid. 

* H(x) is the Heavis ide  uni t  function. 
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5. The General Stationary Solution 

Taking into account (3.6), (3.7) and the results from section 4, we find that the stationary 
solution is given by 

7is(x, z) = 1 P F(k)  sin O ) o ( d - z )  e,kXdk + 
2n ~ sin cood (5.1) 

i u nn 
-k, ,  e J d ' + 2 ~ [F(kn)Rk, eik.X+F(__kn)R - i k . ~ q  sin z 

n = l  

When sin co od has zeros for real k, the principal value of the integral is to be taken, as was 
pointed out in section 3. 

The poles of the integrand in (5.1) are given by the zeros of sin co o d, which are found to be: 

k =  +_k,= + ~2 ~ -  n = l ,  2 . . . . .  

We observe that this expression is the same as the expression (4.3). 
co o has branch-points at k = • but we find that these points are not branch-points for 

the integrand in (5.1). Let us define: 

1 G (k) e ikv dk = 

where (5.2) 
sin O)o(d-  z) R k ~ nn 

G(k) = + Z 
sin o)od ,=1 k + k ~ /  d -  " 

Introducing (5.2) into (5.1) and applying the well-known Parseval's theorem from the theory of 
Fourier analysis ([7], p. 16), we obtain: 

7is (x, z) = - U o~ rl (x - v) g (v) dv - 2 ,=12 k ~ y  sin ~-  z o~ t/(x - v) sin k~ vH (v) d , 

where we have used that R + k =  +_nn/kf l  z. (5.3) 
From (5.2) we obtain, performing the integration in the complex k-plane and using Cauchy's 

residue theorem : 
1 ~ nTg . Y/7~ 

- -  S ln  ~ Z e -K~lv] 
n = N + l  

where 6 (v) is the Dirac S-function, and 

for z r  i 

for z = 0 ,  [ (5.4) 

When z ~ 0 in the first expression in (5.4), it tends to 6 (v), see Appendix. (In Appendix it is 
shown that 7~s(x, z) ---, - Utl (x) when z ~ 0 ,  and 7~s(X, z) ~ O when z ---, d, i.e. 7~s(X, z) satisfies- 
the boundary conditions). 

Us(X, z) given by (5.3):fives the stationary flow over a barrier of an arbitrary shape t/(x), satis- 
fying the condition put on it in section 2. It is not necessary to assume that the barrier is an 
isolated one, which is the case studied by Long. 

The total stream function is: 

~'~ (x, z) = Uz + V s (x, z). 

It is easily verified that 7~r (x, z) satisfies the equation used by Long to find a solution to the 
stationary problem above, ([1], p.83)*. 

* It  is to be no ted  tha t  the quant i t ies  tha t  enter  into the equa t ion  of Long  are d imensionless .  
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Let us consider the wave-solution, which is given by the last term in (5.3). We see that" 

f f x (x - v) sin k, vH (v) dv = t/(v) sin k, (x - v) dv ---, 0 
- - o 0  - - o o  

when x -* - oo. 
Therefore,  in the general case there is no wave-solution far upstream, and we conclude that  

the upstream condit ion assumed by Long is valid at least in the linear theory. (In the special 
case when the barrier is an isolated one, i.e. r/(x) = h(x)(H (x + b)-  H (x-b)), we find that :  

i o~ t / ( x - v )  k, (v) = x < - b ,  sin vH dv 0 for 
-,,xs~ 

which shows that there is no wave-solution upstream, i.e. for x < - b). 
To  compare  our  solution with Long's solution, we in t roduced into (5.3) the expression for 

the barrier  given by (4.7) and carried out  the integration, (which is possible in this simple case). 
We obtained the same Ts(X, z) as Long, except for the sign. This discrepancy in sign is due 
to the definition of T (cf. 2.2), and is obviously immaterial.  We obtain the same stat ionary flow 
pat tern as Long does. 
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Appendix 

We will show that  7~,(x, z) tends to - Utl(x) when z-+0,  and to zero when z-*d. 7~s(X, z) is 
given by (5.3). 

1. Let us first prove that 7J~ (x, z) -* - Ut/(x) when z -* 0. It is easy to show that  : 

1 ~ n r c .  nzr 1 . nrc / nrc \ " l  
_ _ n = N +  l _ _  Sln ~ Z x,,[vj___> d 2 K, 2 1 sm d -  z e x p ' -  d [vl) = .l 

-- d l  + I e x  p ~-v)12dZC - 2 ; x p d  ~)(-]dV)qcoo~d ; (-~176 

Also 

(A2) 
N nTr gtTr [,oo 
E k ~  sin ~ -  z ~ ~/(x - v) sin k.  v H (v) dv ~ 0 when z ~ O. 

n = l  - - o 0  

d v  m. 

(A1) 

Taking into account  (AI) and (A2), we find that  

e (x, z) -* v f 
-* o 7 

~/ + - In 
2rci o 7~ 

l 1 1 Idv'  
V - - V  1 U--U 2 

(A3) 

w h e r e v l - - - e x p  z , v 2 = e x p  ~ - z  . 
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But  

t/ + in v 
o 7c v - -  l) 1 

tt x + - in 
0 7I" U - - V  2 

- -  -~ 7cir/(x) + P r/ + In 
o rc v - l '  

- -  ~ - ~ z i q ( x ) + P  r/ x + - l n  
o ~t v - l '  

when  z -~ 0 ,  
([8], p. 42)*. 

D u e  to (A3) and  (A4) we have  tha t  : 

7~s (x, z) -~ - Ut/(x) when  z -* 0 .  

(A4) 

T o  p rove  that  7is(x, z ) - ~ 0  when  z---,d, we in t roduce  z = d-z' into (5.3) and  let z'---, 0. We  , 

find tha t  : 

l ~ m z  n~z 1 ~ l)n+ 1 nTr mzz, 
d~ n=N+l --K. sin ~ e ~.lv/= __d2 n=N+ 1 (-- lgn sin ~ - -  e -~'1~1 - ,  

1 s i n d  z' exp ( -  d v )  

d [ @ d )1 [ (roY)] =z, (-~176176176 z'~O" 
1 + exp 2 v + 2  exp - d cos 

The  last express ion tends  to zero when  z' ---, 0 for all values of v, and  consequen t ly  ~gs (x, z) ~ 0 
when  z ~ d. 
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* When we have an isolated barrier, the integrals on the right side of (A4) exist in the ordinary sense when x _< - b 
and x > b. 
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