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SUMMARY

The flow of a stratified fluid over a barrier is considered. The initial-value problem is solved, and it is shown that
there is no disturbance far upstream of the barrier when ¢ — oo. The stationary solution which is obtained by letting
t — o0, is given in a simple closed form for a barrier of an arbitrary shape.

1. Introduction

In this paper we are concerned with the flow of a stratified fluid over a barrier (Long’s model).
A barrier is placed in a stratified fluid in equilibrium. At a given point of time the barrier is
suddenly set into motion, and is given a constant velocity. The resulting flow is considered
relative to a system fixed to the barrier. The shape of the barrier is quite arbitrary; it is not
necessarily an isolated one. If we let t - oo in our solution, we obtain a stationary solution
which satisfies the equation of Long ([ 1], p. 83) and with no waves far upstream irrespective of
the value of the Froude number, F. .

It is known that the solution of the corresponding stationary problem as considered by
Long [2], is indeterminate* when F< n™ !, and a condition that there shall be no disturbance
far upstream of the barrier has to be put on the solution. This difficulty is avoided when treating
the problem as an initial-value problem; we then obtain a uniquely determined solution with
no waves far upstream. Experimentally one has observed the phenomenon of blocking (see
[2]). In our opinion this must be a non-linear phenomenon. At least this paper, which deals
with the linear theory, supports Long’s assumption of no disturbance far upstream of the
barrier. This is also in agreement with the results obtained in [3] and [4].

2. Formulation of the Problem

The problem to be studied is assumed to be two-dimensional, and is considered in an x—z-
plane. The fluid which is stratified, incompressible and inviscid, is confined between two rigid
boundaries ; the bottom with the shape given by the eq. z=#(x), and the horizontal plane at
z=d. The fluid is of infinite extend in the x-direction.

The problem is treated as an initial-value problem. For 1< 0 the fluid is in equilibrium
(v'=0), and the density field is given by p=p,— fiz, (0, and f >0 are constants). At t=0 the
barrier is set into motion instantaneously. It is given a constant velocity — Ui, where i is the
unit vector in x-direction. During the small time interval which it takes the barrier to attain
its velocity there is no generation of vorticity, (see [ 5], p. 471). Therefore, since the vorticity is
zero before the barrier is set into motion, Vx v'=0 at t=0", i.e. immediately after the barrier
has attained its velocity. Also the displacement of the fluid particles is negligible during the
small time interval which it takes the barrier to attain its velocity, i.e. the density field at t=0"
is the same as immediately before the barrier is set into motion, and we must have that:

Dv
Pop, = —~Vp—(po—B2z)gk at t=0",

where k is the unit vector in the z-direction. It is assumed that the density stratification is so

* Long has remarked that this indeterminancy can be removed by introducing a fictitious viscosity.
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small that the Boussinesq approximation can be applied ; therefore p in the inertial term. From
this eq. we get:

Dv’
\% — =0at t=0".
X Po Dt
From new on and in the rest of this paper the flow is referred to a system which is fixed to
the barrier. In this system there is a basic motion of the fluid given by :

vp=Ui, py=po—pz (2.1)

The equations governing the motion are the hydrodynamic equations for an incompressible
and inviscid fluid. These equations are linearized, assuming the disturbances in the velocity-
and density field to be small compared with v, and p, respectively, and the stream function
¥ (x, z, t) is introduced. ¥ (x, z, t) is defined by

v, =—Vx¥(x,z1)j, (2.2)
where j is the unit-vector in the y-direction and v; denotes the disturbance in the velocity field.

Because the Boussinesq approximation is applied, we obtain the following equation for
Y(x, z t):
<8+Uﬁ>zvzw+@2—z—o g = 9 (2.3)
ot dx Tz =7 9= Po .
The boundary conditions are that the velocity component normal to the boundaries must be

equal to zero. Linearizing the boundary conditions, we obtain :

b4
Uy :—a—z U@n(x) at z=0,

£ ox 0x (24)

vy, =0 at z=d,

where z = #(x) represents the shape of the barrier. n(x) is supposed to be a continuous function
of x,and n(x) -» 0 when | x| - oo so that {© |1 (x)| dx exists.

The initial conditions follow easily from the discussion at the beginning of this section.
They are:

VY -0,

EV ¥ =0, which in linearized formis: }at t=0" . (2.5)
0 0 J

(;+Uﬂ>V2'I’:O.

ot cx

3. The Solution of the Problem*

In (2.3) we use the Fourier and the Laplace transformation to obtain
d? . .
where
Yk, z,t)=F.T.{¥(x, z,t)} = j Y(x,z, t)e *dx.

o0

Yk, z,p) = ‘( Wk, z, t)e~Pdt .

0

* After the submission of this paper there has appeared a paper by J. W. Miles: Transient motion of a dipole in a
rotating flow, J. Fluid Mech., 39, (1969) 433, where that problem is solved in an analogous manner.
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Also from (2.4) we obtain

. F(k)
¥ = e at z=0, where F(k)=F.T.{—Un(x)} (3.2)
Y =0 at z=d.
From (3.1) we obtain
. ) .

A solution of this equation, which satisfies the boundary conditions (3.2), is

. F(k) sinw(d—2z) 5 , g
S i At ndiliels = _ . 4
v » snod where © k* + U—0F (34)

To find y(k, z, t) we have to perform the inversion, i.e.
1 yHio ksgnkJ‘ ilo+ o0
k,z,t) = — Pdp =
w( s Zy ) i j),_im lp € dp o

The line of integration is above or below the real axis in the complex {-plane according to
whether k >0 or k< 0.
The singularities of ¥ are:

Be Redr . (3.5)

ig— o0

(1) Polesat (=0, (, =U —{

(2) A non-isolated essential singularity at {=U.
w={—k>+§/(U~{)?*}* is a two-valued function of { with branch-points at {= U+ §*/k.
However, we find that these points are not branch-points for . To evaluate the integral in (3.5)
we perform an integration in the complex {-plane. We obtain

sin wq (d —z2) L a, . ARZ _ .-
k,z,t)=F(k) ="~ F(k) Y, sin— e *=*
lp(’z’) () Sinwod ()nglg;snl d €
2 a nmnz (3.6)
+ F(k Hsin ekt
WL g
where
g el m___gt
o em s — kZ = — T .
g {UZ I s a, 42 <nn) 2 2} 3
% —) +k
d
The solution of the problem is now found by performing the inversion, i.e.
1 (> .
Y(x,zt) = P j Wk, z, t)e**dk . (3.7

When ¥ (k, z, £) has poles on the real k-axis, the principal value of the integral is to be taken.

4. Investigation of the Time-Dependent Part of the Solution

In this section we will study the asymptotic behaviour of the solution (3.7) for x fixed and 1 — 0.
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We introduce (3.6) into (3.7) and find that we have to investigate how the following types of
integrals behave asymptotically:

1 (® . - 1 (™ .

e J F(k) %’ie"‘"‘“é" Vdk = P ,( F(k)%-"_e"‘" et gk 4.1
1 {=® . . 1 (® ,

ZJ ”@?6“*”%=z;[ HH%ﬂhW“Wh (4.2)

where we have written
fitg=—iklu - —— 1.
l nrm 2 >
i + k

Lk =—ik U +

(G|

We choose that branch of the two-valued function {(nr/d)* + k*}* which has the real part =0.
Let

Nr<F '<(N+1)m,

where N is an integer, and F = U/§* d is the Froude number.
We find that

N 2)1
_ g nm\“ =

where k, 1s real when n< N and purely imaginary when n > N.

To study the asymptotic behaviour of the integrals (4.1) and (4.2) we will use the method of
steepest descents [6].

Let us start with the integral in (4.1). The saddlepoints are given by the equation

fik)=0,
where the prime indicates differentiation with respect to k. The saddlepoints are:

2 ,
nmw
k= dhy =4 —<;7> T\

which are real when n< N and purely imaginary when n > N. Also |k, | < |k,].

Applying the method of steepest descents to the integrals in (4.1) and {4.2), we deform the
original path of integration (the real k-axis) to a path (denoted by I') which consists of a set of
lines along which Re f;,,=const. <0 or Im f;,,=const., going through the appropriate
saddlepoint(s). In the following it is assumed that F(k) is analytic on and in the region between
the real k-axis and I'. We obtain:

1. Whenn< N,

1 © 1
_p L )e 1o — L )e1®
5 ,( (...)e dk = 3 jr( Je dk

i ik, x — ik, X
— 5[F (k) Ry, e+ F(—k,)R_; e™ "], (4.4)

where R, are the residues of the function (a,/{, ) at its poles k= tk,. In this case I" goes
through the saddlepoints +k,,, which are real. Now

ns’
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L4 ()e ®ak—0(%) when ¢ oo . (4.5)
2n \p

The main contribution to the asymptotic expression for the integral in (4.5) comes from the
regions around the saddlepoints. From (4.4) and (4.5) we obtain:

1 {7 , . .
= PS () O dk— — L[F(k) R, &+ F(—k) Ry, e (46)
T — 0

when t— oo.

2. When n >N,
1 (= 1 :
'2[ (...)e "Wk = -—J (...) e " ®dk=0(t"=exp {rRe f;(—k,g)}) when t— oo .
T, 2n )

I" goes through the saddlepoint —k,, which is purely imaginary. Re f;(—k,,) < 0 and conse-
quently the integral in (4.1) with n > N tends to zero when t — co.

3. It remains to give the asymptotic behaviour of the integral in (4.2). The saddlepoints are
given by the equation f%(k) =0, which is satisfied by: '

k= +A*+iB?*, where

Y G R

__EKd 2) 7 2\ \4 2 47 )"

s b 5 2o

21\d 2 2 d 2 4 ’
ﬁi(m)zg

c-\_\d) |

In this case I' goes through the saddlepoints + A* —iB*, and we obtain:
! ! g (..)e*®dk =
r

B 200 g —
> wa (...)e dk 5

=0(t"* exp {t Re f,(A*—iB%)}) when t— o .
(Re f,(A*—iB*)=Re f,(—A*—iB?)).

We find that Re f, (4% —iB*) < 0, and therefore the integral in (4.2) tends to zero when t — 0.
In the foregoing we have assumed that F (k) is analytic on and in the region between the real
k-axis and I'. For a given barrier it has to be investigated whether this assumption is satisfied
or not. When the barrier is that of Long, i.e. when
X

n(x) =g<l+cos b)(H(x+b)—H(x—b))*, (4.7)

it is found that F (k) is analytic in the whole k-plane. Consequently the results above are valid
for this barrier. We arrive at the same conclusion when the barrier is a general isolated one.

When the barrier is that of Queney, ([ 1], p. 68), F (k) is not analytic in the whole k-plane, and
the results above cannot be applied directly. However, we can split the integral {* _ into the
two integrals (©  and [, and in these two integrals F (k) is analytic, and we can find the asymp-
totic behaviour of them separately. It is to be noted that there will be an asymptotic contribu-
tion of order ¢! from the region near the origin in both of these integrals. However, this con-
tribution tends to zero when ¢ — o0, and consequently the main result above, which is expressed
by (4.6), is still valid.

* H(x) is the Heaviside unit function.
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5. The General Stationary Solution

Taking into account (3.6), (3.7) and the results from section 4, we find that the stationary
solution is given by
" sin wo(d—z

1 )
I'd =-—P F(k = dk
. 2) 2n (k) sin wgd © * (5.1)

— a0

i Y : : . Am
+ 3 Y [F(k)R, e**+F(—k,)R_, e **] sin VL
n=1
When sin w,d has zeros for real k, the principal value of the integral is to be taken, as was
pointed out in section 3.
The poles of the integrand in (5.1) are given by the zeros of sin @, d, which are found to be:

. 2)4
k=ik,.:i{'g'2_<%r“>} n=1,2,....

We observe that this expression is the same as the expression (4.3).

w, has branch-points at k= 4 §*/U, but we find that these points are not branch-points for
the integrand in (5.1). Let us define:
1 (® .
— G(k)e* dk
| Gwema,
where (5.2)

sin wq(d N/ Ry, R . > n |
6 =| el _ ¢ (Re o)1

Introducing (5.2) into (5.1) and applying the well-known Parseval’s theorem from the theory of
Fourier analysis ([ 7], p. 16), we obtain:

g(v) =

o N onn . onm [® )

Y(x,z)=—-U n(x—v)g@)dv—2 Y pp Sz 1(x—v) sin k,vH (v)dv| ,

-0 n=1 "%n - @

where we have used that R, = +nn/k,d>. (5.3)
From (5.2) we obtain, performing the integration in the complex k-plane and using Cauchy’s

residue theorem:

1 o0
7 > }Esin%ze il for z#£0),

n=N+1 K (5.4)

o= ]b(v) for z=0,

where ¢ (v) is the Dirac d-function, and

e
T \g) T

When z— 0 in the first expression in (5.4), it tends to 6(v), see Appendix. (In Appendix it is
shown that ¥ (x, z)» — U#n(x) when z— 0, and ¥(x, z) > 0 when z—d, ie. ¥ (x, z) satisfies.
the boundary conditions).

¥ (x, z) given by (5.3) nves the stationary flow over a barrier of an arbitrary shape ;(x), satis-
fying the condition put on it in section 2. It is not necessary to assume that the barrier is an
isolated one, which is the case studied by Long.

The total stream function is:

Yr(x, z) = Uz+ ¥(x, 2) .
It is easily verified that W, (x, z) satisfies the equation used by Long to find a solution to the
stationary problem above, ([1], p.83)*

* It is to be noted that the quantities that enter into the equation of Long are dimensionless.
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Let us consider the wave-solution, which is given by the last term in (5.3). We see that:

g #(x—v) sin k,vH (v)dv = S #(v) sin k,(x —v)dv— 0
when x - —c0.

Therefore, in the general case there is no wave-solution far upstream, and we conclude that
the upstream condition assumed by Long is valid at least in the linear theory. (In the special
case when the barrier is an isolated one, i.e. n(x) = h(x)(H (x + b) — H (x — b)), we find that:

S n(x—v)sin k,vH(v)dv=0 for x< —b,
which shows that there is no wave-solution upstream, i.e. for x< —b).

To compare our solution with Long’s solution, we introduced into (5.3) the expression for
the barrier given by (4.7) and carried out the integration, (which is possible in this simple case).
We obtained the same ¥(x, z) as Long, except for the sign. This discrepancy in sign is due
to the definition of ¥ (cf. 2.2), and is obviously immaterial. We obtain the same stationary flow
pattern as Long does.
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Appendix

We will show that ¥,(x, z) tends to —Un(x) when z— 0, and to zero when z—d. ¥(x, z) is
given by (5.3).

1. Let us first prove that ¥,(x, z) > — U (x) when z — 0. It is easy to show that:

1 = 12
?"=;+1%Si %ze*""“'aangl sin%zexp(—ndfnlva
1 sin g z[ exp <— g v)] (A1)
=3 5 (—oo<v< o), when z—0.
1+ [exp <— ;U)jl »2[:exp <w g )J cosgz J
Also

N [¢)
> anZ smﬁdqzj n(x—v) sin k,v H(v)dv— 0 when z—0 . (A2)
n=1 "%n -

lps(x’ Z) - = ES VI(X—U)
d .,
z—0

21\ T 7
1+ [exp (— i )J -2 [exp (——dl)>jI cos 5 z (A3)
LU /0 d 1 1
__Z—ﬁjon<x+;1nl>{v—vl—v—vz}dv’

in in
where v; = exp <E Z> » Uy =¢Xp <~ 7 Z) .
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g d © s d d
j n<x+lnv> dv ~+7ri17(x)+Pj 11<x+1nv) v ,
o i v—1, 0 T v—1

= d d « d d
{ Y <x+—lnv> v ~—>—7ri17(x)+Pj n<x+—lnv> v ,
0 T V=10, 0 T v—1

when z—>0,

([8], p- 42)~.
Due to (A3) and (A4) we have that :

Y,(x, z)-> —Un(x) when z—0.

2. To prove that ¥,(x, z) >0 when z— d, we introduce z = d—z' into (5.3) and let 2’ — 0. We
find that:

1 & nm . anz _ 1 2 nm . nnz _
= Y —sin——e = Y (—1ptt S sin—e ™
d n=N+1 Kn d d n=N+1 Kn d
LT, T
sin—z exp |— v
1 d d

r (—oo<v< o), when z—0.

d
1 + [exp (—2Zv>:|+2[exp <— %v)]cos%z’

The last expression tends to zero when z' -0 for all values of v, and consequently ¥ (x,2)->0
when z->d.
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